News

RSS
North American voltage supply networks and load types

North American voltage supply networks and load types

North American voltage supply networks and load types


Electrical networks within North America supply power to residential, commercial, and industrial structures. Depending on the amount of power required for a given installation, various voltage configurations can be utilized.


North American voltages

North American commercial installations are typically supplied using either 120/240 V AC split (dual) or 208Y/120 V AC, 3-phase wye networks. Industrial installations within the U.S. commonly use 480Y/277 V AC, 3-phase wye networks. For Canada, the network voltages are increased to 600Y/347 V AC. 3-phase delta networks, which do not offer a line-to-neutral voltage, are also common, most often supplying either 240, 480 or 600 V AC.

Manual motor starters are commonly applied in both industrial and commercial applications. To meet the requirements for North America, they are suitable for use on 1- and 3-phase networks with line-to-line voltages up to 600 V AC.


Three-phase network configurations

North American 3-phase supply networks differ based on the secondary winding of the upstream transformer. The two most common secondary winding styles are wye, which includes three power legs and a neutral, and delta, which includes only three power legs without a neutral connection. These networks can be either grounded or ungrounded.


Solidly grounded wye and ungrounded delta networks are most common in North America.

3JIndustry Specialized Distributor - Buy & Sales Used Products

Buy, Sell, Used Drive, Plc, Automation, Relay, Plc, Power Supply, Sensor, Timer, Contactor, Breaker, Cable, Touchscreen, Omron, Moeller, Eaton, AB.

Email : Sales@3JIndustry.com

  • 3J Industry
How its Work : Power Supplies

How its Work : Power Supplies

Introducing Power Supplies
Power is the backbone of any electronic system and the power supply is what feeds the system. Choosing the right supply can be the critical difference between a device working at optimum levels and one that may deliver inconsistent results.

In addition to alternating current (AC) to direct current (DC) power supplies, DC to DC converters are also available. If DC is already available in your system, a DC to DC converter may be the better design choice than AC discussed below.

Direct current power supplies are either unregulated or regulated. Regulated supplies come in several options including linear, switched and battery-based.

AC-DC Conversion Basics
A power supply takes the AC from the wall outlet, converts it to unregulated DC, and reduces the voltage using an input power transformer, typically stepping it down to the voltage required by the load. For safety reasons, the transformer also separates the output power supply from the mains input.

Figure 1, Figure 2, and Figure 3 illustrate the general transformation from AC to DC.

Alternating current takes the form of a sinusoidal wave with the voltage alternating from positive to negative over time.


Figure 1: Alternating Current from Wall Outlet

In the first step of the process, the voltage is rectified using a set of diodes. Rectification transforms the sinusoidal AC. The rectifier converts the sine waves into a series of positive peaks.

Figure 2: Full Wave Rectified

Once the voltage has been rectified, there is still fluctuation in the waveform—the time between the peaks—that needs to be removed. The rectified AC voltage is then filtered or “smoothed” with a capacitor.

The capacitor is typically quite large and creates a reservoir of energy that is applied to the load when the rectified voltage drops. The incoming energy is stored in the capacitor on the rising edge and expended when the voltage falls. This significantly reduces the amount of voltage droop and smooths out the voltage. Increasing the storage capacity of the capacitor generally produces a higher quality power supply.

Figure 3 shows the rectified voltage and how the capacitor smooths the droop.


Figure 3: Full Wave Rectified + Capacitor

Once the voltage conversion is complete, there is still some variation in output, called ripple. In a regulated power supply, the voltage is then passed through a regulator to create a fixed DC output with less ripple.
   


Power Supply Comparisons
AC power supplies come in two varieties, unregulated and regulated. Unregulated is the most basic type of power supply and does not have the ability to supply consistent voltage to a load, while regulated power supplies do and have many different design options.

Linear converters are the least complex but also create the most heat, while switched converters are more intricate and cooler but create more noise. Batteries are typically switched converters. Each has advantages and drawbacks but which to use will be based mostly on the type of application and the conditions under which it will be run.

Table 1 illustrates how the types of power supplies are categorized and summarizes many of the pros and cons of each type.

UNREGULATED REGULATED
Pro:
  • Simple circuitry
  • Durable

Con:
  • Voltage varies with load current draw
  • Designed for fixed output current or voltage
Pro:
  • Voltage is consistent
  • Available in high quality power supplies
  • Noise filtering
  • Adjustable output voltage or current
  • Precision tuning

Con:
  • Complex
  • More expensive
  LINEAR SWITCHED BATTERY
  Pro:
  • Safe and reliable
  • Small residual ripple
  • Less noise
  • Good line & load regulation
  • Stable

Con:
  • Poor efficiency
  • Large heatsinks
  • Large size & heavy
  • Expensive
Pro:
  • Small size, lightweight
  • Wide input voltage range
  • High efficiency
  • Less expensive than linear

Con:
  • Complex circuitry
  • Mains pollution
  • Higher noise
Pro:
  • Portable
  • Doesn’t require on-site power

Con:
  • Fixed voltage input
  • Short life
  • Output voltage droops as energy reserves are used

Table 1: Types of Power Supplies

Unregulated Power Supply Theory
Because unregulated power supplies do not have voltage regulators built into them, they typically are designed to produce a specific voltage at a specific maximum output load current. These are typically the block wall chargers that turn AC into a small trickle of DC and are often used to power devices such as household electronics. They are the most common power adapters and are nicknamed a “wall wart”.

The DC voltage output is dependent on an internal voltage reduction transformer and should be matched as closely as possible to the current required by the load. Typically the output voltage will decrease as the current output to the load increases.

With an unregulated DC power supply, the voltage output varies with the size of the load. It typically consists of a rectifier and capacitor smoothing, but no regulation to steady the voltage. It may have safety circuits and would be best for applications that do not require precision

 


Figure 4: Block Diagram -- Unregulated Linear Supply

The advantages of unregulated power supplies are that they are durable and can be inexpensive. They are best used, however, when precision is not a requirement. They have a residual ripple similar to that shown in Figure 3.

NOTE: Wavelength does not recommend using unregulated power supplies with any of our products.

Regulated Power Supply Theory
A regulated DC power supply is essentially an unregulated power supply with the addition of a voltage regulator. This allows the voltage to stay stable regardless of the amount of current consumed by the load, provided the predefined limits are not exceeded.

Figure 5: Block Diagram -- Regulated Supply

In regulated power supplies, a circuit continually samples a portion of the output voltage and adjusts the system to keep the output voltage at the required value. In many cases, additional circuitry is included to provide current or voltage limits, noise filtering, and output adjustments.

Linear, Switched, or Battery-based?
There are three subsets of regulated power supplies: linear, switched, and battery-based. Of the three basic regulated power supply designs, linear is the least complicated system, but switched and battery power have their advantages.

Linear Power Supply
Linear power supplies are used when precise regulation and the removal of noise is most important. While they are not the most efficient power source, they provide the best performance. The name is derived from the fact that they do not use a switch to regulate the voltage output.

Linear power supplies have been available for years and their use is widespread and reliable. They are also relatively noise-free and commercially available. The disadvantage to linear power supplies is that they require larger components, hence are larger and dissipate more heat than switched power supplies. Compared to switched power supplies and batteries, they are also less efficient, sometimes exhibiting only 50% efficiency.

Switched Power Supply
Switched mode power supplies (SMPS) are more complicated to construct but have greater versatility in polarity and, if designed properly, can have an efficiency of 80% or more. Although they have more components, they are smaller and less expensive than linear power supplies.

Figure 6: Block Diagram -- Regulated Switching Supply

One of the advantages of switched mode is that there is a smaller loss across the switch. Because SMPS operate at higher frequencies, they can radiate noise and interfere with other circuits. Interference suppression measures, such as shielding and following layout protocols, must be taken.

The advantages of a switched power supply is that they are typically small and lightweight, have a wide input voltage range and a higher output range, and are much more efficient than a linear supply. However, a SMPS has complex circuitry, can pollute the AC mains, is noisier, and operates at high frequencies requiring interference mitigation.

Battery-based
Battery-based power is a third type of power supply and is essentially an energy storage unit. While there are a few advantages to battery-based power, such as not having to rely on a nearby power source and no noise to interfere with the electronics, in most applications using laser diodes, batteries are the least efficient method of powering the equipment. Most batteries are difficult to match the correct voltage to the load. Using a battery that can exceed the internal power dissipation of the driver or controller can damage your device.

Selecting a Power Supply
When choosing a power supply, there are several requirements that need to be considered.
  • The power requirements of the load or circuit, including
    • voltage
    • current.
  • Safety features such as voltage and current limits to protect the load.
  • Physical size and efficiency.
  • Noise immunity of the system.
Important Specifications
While all power supply specifications are valuable, some are more critical than others. A few specifications of note are:
Output Current: The maximum current that can be supplied to the load.

Load Regulation: The load regulation is how well the regulator can maintain its output with a load current change, and usually is measured in millivolts (mV) or as a maximum output voltage.

Noise & Ripple: Noise is any added and unwanted electronic interference, and ripple is the small variation in voltage when AC is transformed into DC. These are typically combined into one measurement. In switching power supplies, the measurement is given in peak-to-peak, showing the extent of the noise spikes that arise from the switching.

Overvoltage Protection: Sometimes output voltages can exceed their nominal values and can damage the load. Overvoltage protection is a circuit that shuts down the power supply should the voltage limits be exceeded.

Overload Protection: Overload protection is a safety measure used to prevent damage in the event of a short circuit or overcurrent event. Much like the circuit breaker in a house, the overload protection shuts off the power supply so the load will not be damaged.

Efficiency: Efficiency is the ratio of power being pulled from the power grid that is effectively being converted to DC power. A good SMPS power supply will operate with at least 80% efficiency and, with a proper system design, can operate at even higher rates. An efficient system will reduce heat generation and can save energy.

Noise & Ripple
Noise and ripple are derived from the transformation of AC to DC and are the byproduct of rectification and switching, among other things. They are significant specifications to note because they can negatively affect sensitive instrumentation. If the noise and ripple are very high, small signals can be overwhelmed or the life of the hardware can be significantly shortened. That said, noise and ripple can be virtually eliminated with a high quality power supply.

During the conversion from AC to DC, the alternating sine wave cannot be completely suppressed. The resulting small voltage variations are called ripple. Many times, the amount of the fluctuation depends on how well the power supply is matched to the load.

Noise is the unwanted additions that occur outside of the normal ripple. It comes from many other sources, including switching and electronic noise generated outside of the power supply, such as from nearby electronics. Noise usually occurs in conjunction with ripple and is much more variable and unpredictable. Switching noise typically occurs at very high frequencies.

Figure 7 is an example of noise (created by switching) and ripple in a medium quality power supply.


Figure 7: Ripple & Noise for Regulated, Switched Power, Representative of a Mid-Quality Supply

Figure 8 illustrates the noise potential in a regulated linear power supply. While much less than the ripple of a regulated switched supply, it can still be significant enough to mask data.


Figure 8: Ripple & Noise for Regulated, Linear Power, Representative of a Mid-Quality Supply

3JIndustry Specialized Distributor - Buy & Sales Used Products

Buy, Sell, Used Drive, Plc, Automation, Relay, Plc, Power Supply, Sensor, Timer, Contactor, Breaker, Cable, Touchscreen, Omron, Moeller, Eaton, AB.

Email : Sales@3JIndustry.com

  • 3J Industry